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tested in the maize-mixed farming system in East Africa and 
commercial sugarcane farms in South Africa. Although different 
generations of this technology were evaluated and their scientific 
underpinnings well-documented, adoption by farmers is not yet 
commensurate with the potential benefits of the technology. 
Therefore, the objectives of this review were to (1) provide a synthesis 
of the evidence for benefits of push-pull to inform design of evidence-
based practices and policies, and (2) explore options and 
opportunities for expansion of push-pull in other crops and farming 
systems in sub-Saharan Africa. We report the evidence for reduction 
in witchweed (Striga spp.) infestation (by > 90%), spotted stemborers 
(Chilo partellus) and African maize stalk borer (Busseola fusca) (by 
>70%), and fall armyworm (Spodoptera frugiperda) damage (>70%) in 
the push-pull maize-mixed farming system in East Africa. We have 
also found evidence for higher maize yields (~100%) and financial 
viability of the technology. We further found some evidence for lower 
damage to sugarcane by the sugarcane stemborer (Eldana 
saccharina) in South Africa. In addition, our review identifies 
opportunities for expansion of push-pull for pest management in 
other crops, especially sorghum, millet, upland rice, pulses, 
vegetables, root and tuber crops and cotton. The expansion of the 
geographic range of invasive alien species, such as the spotted 
stemborer and fall armyworm, and emerging infectious plant 
diseases, such as maize lethal necrosis disease (MLND), provides 
strong motivation for expanding push-pull into other farming systems 
and regions of Africa. Many emerging infectious plant diseases are 
spread by vectors, and push-pull may hold the potential for integrated 
vector and disease management. Therefore, we recommend routine 
monitoring of MLND and its vectors in existing push-pull trials in areas 
where the disease occurs. We also strongly recommend the 
development and sharing of best-practice guidelines for trial design 
and monitoring of push-pull performance indicators. 
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1 Introduction 
The first use of push-pull as a strategy for insect pest management dates back to the 1980s in Australia, 
where Pyke and colleagues (1987) coined the term. They used repellent and attractive stimuli 
arranged in tandem to manoeuvre the distribution of bollworms (Heliothis species) in cotton, where 
the pest was becoming resistant to insecticides (Pyke et al., 1987). The name “push–pull” was later 
formalized by Miller and Cowles (1990). Since then, various forms of the push-pull technology have 
been tested in cereal, fruit and vegetables, sugarcane, and tree crops across the globe (Cook et al., 
2007; Kergunteuil et al., 2015; Khan and Pickett, 2004; Poveda et al., 2019; Sampson et al., 2020; Xu 
et al., 2018; Yan et al., 2015; Yi et al., 2019). The definition and typologies of push-pull as a pest 
management strategy are evolving (Eigenbrode et al., 2016). In some instances (e.g., Meats et al., 
2012; Sampson et al., 2020; Yan et al., 2014) what was described as push-pull involved spraying crops 
with repellent and attractant chemicals to provide the “push” or “pull” stimulus. The push-pull 
strategy in the medical field involves the combination of an attractive trapping system and spatial 
repellent to reduce human-vector contacts (Gordon et al., 2018). Table 1 provides a summary of the 
crops and pathosystems where push-pull has been tested in different parts of the world. 

Push-pull has been cited as a climate-smart and agroecological approach to achieve high yields, and 
profitability while also providing other ecosystem services (D’Annolfo et al., 2020; Gugissa et al., 2022; 
Kopper and Ruelle, 2022). In Africa, push-pull was developed as an integrated pest management 
strategy in cereal cropping systems (Cook et al., 2007; Khan et al., 1997; Khan and Pickett, 2004). In 
principle, push-pull employs a stimulo-deterrent strategy that seeks to divert pests from a valued crop 
using repellents or deterrents to provide a ‘push’, while simultaneously relocating them to another 
less-valued resource such as a trap crop using attractants, arrestants, feeding or oviposition stimulants 
and other cues or behaviour-modifying stimuli to provide a ‘pull’ (Cook et al., 2007; Eigenbrode et al., 
2016; Reddy, 2017; Zhang et al., 2013). According to Zhang et al. (2013), the behaviour-modifying 
stimuli could be either long- or short-term, visual or chemical cues. The chemical cues could be 
synthetic, plant-derived or insect-derived semiochemicals. Visual stimuli, repellent and trap plants, 
host and non-host volatiles, insect pheromones, and antifeedants and oviposition deterrents are 
usually applied as potential stimuli in the “push–pull” strategy for pest control (Zhang et al. 2013). The 
push-pull strategy can also pull natural enemies into the valued crop (Khan et al., 1997; Sampson et 
al., 2020), potentially enhancing biological control. The following are the main mechanisms identified 
for pulling natural enemies: (a) concentrating pests in the trap crop; (b) providing resources for natural 
enemies, such as floral or extrafloral nectar; or (c) directly affecting natural enemy behaviour e.g., 
through attractive volatiles (Cook et al., 2007; Eigenbrode et al., 2016; Khan et al. 1997). Since push-
pull utilizes plant diversification and non-toxic phytochemicals, often produced directly by companion 
plants, to manipulate the behaviour of pests, it is considered to be environmentally friendly (Yi et al., 
2019), and an appropriate strategy to increase productivity in complex landscapes (Poveda et al., 
2019). 

The animal-behaviour basis of push-pull and its applications has been widely reviewed and established 
(Cook et al., 2007; Eigenbrode et al., 2016). Although push-pull has been shown to be successful in 
reducing stemborer damage as well as witchweed (Striga spp.) infestations in cereals in East Africa 
(Khan et al., 2001; 2002; Midega et al., 2010; Pickett et al., 2014) and suppressing pests of forestry 
elsewhere (Lindgren & Borden 1993; Shea & Neustein 1995; Bennison et al., 2001; Borden et al, 2006), 
its potential is yet to be fully realized in sub-Saharan Africa (Eigenbrode et al., 2016; Letourneau et al., 
2011). Several reviews have highlighted challenges of replicating successes from cereal and sugarcane 
in other systems (Eigenbrode et al., 2016; Finch & Collier 2012). Even within the cereal and sugarcane 
cropping systems in Africa, where it has been researched for several decades, the adoption of push-
pull by farmers is not yet commensurate with its promises and potential (Cockburn et al., 2014). For 
example, the use of push-pull in East Africa has been limited to maize and sorghum cropping, mostly 
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 at the scale of individual fields. Establishing push-pull in new systems, as well as modifying existing 

systems, requires sufficient understanding of the associated chemical ecology, as interactions 
between pests and crop plants are based on semiochemicals released by the plants (Kergunteuil et 
al., 2015). The adoption of push-pull has also been shown to depend on the magnitude of pest 
pressure and the risk perception of farmers (Cockburn et al., 2014; Poveda et al., 2019). 

Eigenbrode et al. (2016) conducted a global review of published work on push-pull and found that 
literature tends to focus on longer-range stimulo-deterrent strategies, rather than the full range of 
cues and modalities involved. They argue that this has yielded an imperfect understanding of cues 
involved in most systems. These observations suggest that opportunities exist to improve and broaden 
push-pull. Therefore, the objectives of this review are to (1) provide a synthesis of the evidence for 
the benefits of push-pull, thus aiding the formulation of evidence-based practices and policies, and (2) 
explore options and opportunities for expansion of push-pull in the context of other cropping and 
farming systems in sub-Saharan Africa. We review published work from Africa and elsewhere in the 
world as a basis for further exploration, testing, and co-development of push-pull innovations with 
different stakeholders. 

 

2 Scope of the review, search strategy, and selection 
of studies 

2.1 Population and eligibility criteria 
The scope of this systematic literature review was limited to push-pull technology, with a focus on 
studies involving experiments across Africa. Wherever available, similar studies conducted outside 
Africa were included to provide background and perspective. This review considered all types of 
relevant studies published in peer-reviewed journals, book chapters, and reports on the subject 
matter. 

Studies were classified according to their implementation (field vs laboratory) and experimental 
design (e.g., observational, quasi-experimental and randomised controlled trials). All studies were 
included or excluded using pre-defined eligibility criteria and further checked for duplication. To be 
eligible for inclusion in the review, a publication must: (1) focus on push-pull in crop production 
systems, (2) rely on field-based experimental studies, (3) be published in a peer-reviewed scientific 
journal or book chapter, (4) report crop yields, pest infestation, crop damage or changes in soil quality 
in any part of the world. Publications that focus on push-pull in medical and veterinary applications 
were excluded. 

In addition to reviewing publications available on the push-pull network (http://www.push- 
pull.net/adoption.shtml), we conducted a comprehensive literature search to maximize the number 
of identified studies, including those in previous reviews. We conducted the literature search for 
studies matching the eligibility criteria in various databases, including CAB index, Google Scholar, and 
Scopus. Finally, references of identified relevant studies were scanned to identify additional 
publications matching the study eligibility criteria. Free-text was used for the search, considering 
different keywords and their combinations. The key words used were push*pull*stimulo-deterrent, 
push*pull*crop*yield, push*pull*insect*damage, push*pull*infestation, push*pull*striga, 
push*pull*disease, push*pull*stemborer, push*pull*adoption, push*pull*soil*health. All eligible 
studies published until February 2022 were retrieved without language restrictions, and if the study 
was published in a non-English language, the abstract was translated into English. 
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Table 1. Types of crops and pathosystems where various forms of push-pull have been tested 

Crop type Pathosystem Country Reference 
Cereals Maize-Chilo partellus Kenya Khan and Pickett 

(2004) 
  Malawi Nyassi et al. (2022) 
 Maize-Busseola fusca Kenya Khan and Pickett 

(2004) 
 Maize-Striga Kenya Khan and Pickett 

(2004) 
 

 
Malawi Nyassi et al. (2022) 

 Millet-Striga Kenya Midega et al. (2010) 
 Rice-Chilo auricilius China Yi et al. (2019) 
 Maize-Spodoptera 

frugiperda 
Kenya Midega et al. (2018) 

 
 

Tanzania ibid 
 

 
Uganda ibid 

  Mexico Guera et al. (2021) 
Fibre crops Cotton-Heliothis Australia Pyke et al. (1987) 
 Cotton-Helicoverpa India Duraimurugan and 

Regupathy (2005) 
 Cotton-Helicoverpa India Jadhav et al. (2008) 
Sugar crops Sugarcane-Eldana 

saccharina 
South Africa Kasl (2004) 

Vegetables Brassica-Delia 
radicum. 

Netherlands Kergunteuil et al. 
(2015) 

 Onion- Delia antiqua USA Miller and Cowles 
(1990) 

Tuber crops Potato- Tecia 
solanivora 

Colombia Poveda et al. (2019) 

Fruits Strawberry-
Frankliniella 

United Kingdom Sampson et al. (2020) 

 Blueberry-Dasyneura 
oxycoccana 

United Kingdom Sampson et al. (2020) 

 Citrus-psyllid China Yan et al. (2015) 
 Tomato- Bactrocera 

tryoni 
Australia Meats et al. (2012) 

 

2.2 Screening of studies and data extraction 
Wherever available, full-text articles of the selected papers were retrieved, the contents perused (text 
review), and the relevant outcome variables were extracted. If a given study reported several 
outcomes of interest, each outcome was taken as a separate record. The main findings and 
conclusions for each study were also extracted as free text. Accordingly, a total of 156 publications 
were identified (Supplementary Table S1), of which 96 publications were excluded through the 
selection process (Figure 1). The publications excluded from the review only focussed on laboratory 
studies, or on describing the mechanisms for push-pull effects on pests or natural enemies. A total of 
63 publications were selected for review and analysis. Only seven publications had quantitative data 
suitable for analysis of variables chosen. These are Guera et al. (2021), Hailu et al. (2018), Khan et al. 
(2008), Midega et al. (2015), Midega et al. (2018), Ndayisaba et al. (2020) and Nyassi et al. (2022). 
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2.3 Selection of outcome measures and performance metrics 
Initially, we consider any measurable independent change in the outcome variables that were 
reported in the selected publications. Since some variables were less frequently reported across 
studies, we focussed on a few that were reported by at least three independent studies. Accordingly, 
crop yields, insect pest density, infestation, damage, weed infestation, plant diseases, mycotoxins, and 
soil fertility measures were selected (Figure 1). To provide a quantitative summary of the various 
studies, we selected a single metric that provides both the magnitude and direction of change due to 
the application of push-pull. Accordingly, we chose the percent change, calculated in equation 1 
below, as a more appropriate metric than others, such as the response ratio. Percent reduction in 
incidence (infestation), severity of damage, yield etc. were calculated as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃ℎ𝑎𝑎𝑃𝑃𝑎𝑎𝑃𝑃 = 100 ∗ �
𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 − 𝑃𝑃𝑃𝑃𝑃𝑃

𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶
�                                                           (𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑃𝑃𝐸𝐸𝐶𝐶𝑃𝑃 1) 

The percent change may be conceived as a measure of the effectiveness of push-pull, showing both 
the magnitude and direction of change. Negative values represent reduction in the measured variable 
in push-pull relative to control, while positive values represent increase in the magnitude of effect. As 
such, a negative value of pest incidence or damage is indicative of a positive effect of push-pull. In 

Figure 1. Total number of publications identified through literature search, and those used for 
qualitative review and quantitative analyses. 
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 terms of crop yields, a negative value is indicative of a reduction in yield with push-pull in comparison 

to control. We expect that as pest pressure increases, the effectiveness of push-pull will increase. 
Given the small number of publications (maximum 6 on each outcome as shown in Figure 1), we did 
not conduct any formal statistical analysis. We only present the median, mean, minimum and 
maximum values (Table 2). 

2.4 Exploring opportunities for expansion 
To explore options and opportunities for expansion of push-pull, we reviewed literature on the 
cropping and farming systems where it has been studied. We then identified suitability maps for the 
key pests and the main crop they affect (maize and sugarcane) in those cropping and farming systems. 

 

3 Synthesis and discussion 
Several reviews and syntheses are available on the various forms of push-pull and underlying 
mechanisms. Eigenbrode et al. (2016) provide a mechanistic framework and the range of possible 
combinations of animal behavioural effects contributing to push-pull in different systems. Here, we 
focus on describing the evolution and generations of push-pull developed over the years in Africa. 

3.1 Definition and typology of push-pull 
For the purpose of this review, we take a broad scope of push-pull, encompassing all stimulo-deterrent 
strategies in which specifically chosen companion plants grown between and around the main crop 
release semiochemicals that fend off insect pests from the main crop. As such, the system consists of 
an intercrop, which is the “push” component, and a trap crop attracting insect pests away from the 
main crop, which is the “pull” component (Cook et al., 2007; Miller and Cowles, 1990). Over the last 
two decades, various push-pull configurations were rigorously tested, and three generations suited to 
the maize-mixed farming system in East Africa have been developed. 

The original push-pull promoted in sub-Saharan Africa (SSA) was developed in the late 1990’s by 
scientists at the International Centre of Insect Physiology and Ecology (icipe) based in Kenya, in close 
collaboration with Rothamsted Research (UK) and national partners in Kenya. This technology, 
referred to as first-generation push-pull, uses silverleaf desmodium (Desmodium uncinatum) as the 
push component and Napier grass (Pennisetum purpureum) as the pull component. These species 
were selected and combined for the management of stemborers in maize crops in the late 1990s (Cook 
et al., 2006; Khan et al., 2000). 

Efforts to adapt push-pull to climate change conditions led to the identification of drought-tolerant 
greenleaf desmodium (Desmodium intortum) and Brachiaria brizantha cv Mulato II (hereafter Mulato-
II) as the push and pull companion crops, respectively. This was identified as the second generation or 
“climate-smart” push-pull (Khan et al., 2018; Midega et al., 2015b). In addition to tolerance to drought, 
Mulato II was found to be preferred as livestock fodder (Chidawanyika et al., 2014). D. intortum, on 
the other hand, has similar effects on witchweed as D. uncinatum, and is considered by farmers as 
excellent fodder (Midega et al., 2010; Murage et al., 2015). Second-generation push-pull was also 
demonstrated to be highly effective in reducing fall armyworm damage (Khan et al., 2018; Midega et 
al., 2018). Not long after the introduction of second-generation push-pull, an invasive spider mite 
(Oligonychus trichardti) emerged as a new threat to Mulato II, especially in hot and dry weather 
(Cheruiyot et al., 2018a). Another problem arising was that D. intortum does not flower and produce 
seeds near the equator (Cheruiyot et al., 2022). To address these challenges, better adapted 
alternative Brachiaria and Desmodium varieties have been identified (Cheruiyot et al., 2018a, b; 2020; 
Midega et al., 2018). D. incanum was selected for its tolerance to longer drought stress conditions 
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 (Midega et al., 2015; 2017) and its ability to produce seeds in regions where D. intortum is unable to 

flower (Cheruiyot et al., 2022). 

A third-generation push-pull was developed by combining D. incanum as the push and B. brizantha cv 
Xaraes as the pull component for stemborer control. Cheruiyot et al. (2022) compared field 
performance and farmer opinions of third-generation push-pull with second-generation push- pull in 
terms of controlling stemborers, fall armyworm, and witchweeds in western Kenya in 2019. Both 
second- and third-generation push-pull technologies were reported to have significantly lower 
witchweed incidence, fall armyworm, and stemborer damage, and higher grain yield than in farmers’ 
existing practice. Although the third-generation push-pull suffered higher stemborer damage, farmers 
preferred it over the second-generation technology (Cheruiyot et al., 2022). 

3.2 Evidence for benefits 
3.2.1 Increased crop yields 
Changes in maize yields due to first-generation push-pull have been rigorously evaluated in western 
Kenya, and the results show significantly higher grain yields than in the monoculture plots in almost 
all sites (Khan et al., 2008; Midega et al., 2015). Similarly, second-generation push-pull has given 
significantly higher maize yields across test sites in Kenya, Tanzania, Uganda (Midega et al., 2015; 
2018; Ndayisaba et al., 2020) and Mexico (Guera et al., 2021). A summary of the various studies shows 
that yields increase by 53-133% relative to the monoculture maize (Table 2). On the other hand, in 
Malawi, average yields in push-pull were lower than in monoculture plots. Push-pull combined with 
conservation tillage produced a greater yield reduction (-10.2%) than conventional tillage (-3.7%), 
relative to monoculture plots (Table 2). 

Table 2. Percent change in maize grain yield, witchweed infestation, stem borer infestation, 
and fall armyworm damage under first- and second-generation (climate-smart) push-pull 
relative to control. Positive effects of push-pull are indicated by positive values for crop yield, 
or negative values for pest incidence and damage. 

Variable Push-pull 
generation 

Country (N)† Median Mean Min Max 

Witchweed infestation First Kenya (77) -87.0 -84.6 -100.0 -50.0 
  Uganda (2) 62.0 -62.0 -59.6 -64.4 
 Second Kenya (66) -95.5 -92.1 -100.0 -40.0 
 

 
Uganda (10) -97.8 -92.4 -99.8 -63.3 

 
 

Malawi-CA (2) -20.9 -21.0 -23.1 -18.8 
  Malawi-conv (2) -10.5 -10.5 -30.0 9.1 
  Overall (159) -91.8 -86.2 -100.0 9.1 
Stem borer infestation First Kenya (81) -66.5 -66.3 -100 -2.4 
 

 
Uganda (2) -55.1 -55.1 -80.4 -29.8 

 Second Kenya (60) -84.5 -83.2 -100 -56.4 
  Uganda (10) -82.5 -77.9 -93.9 -33.1 
  Overall (153) -76.9 -73.5 -100.0 -2.4 
Fall armyworm damage Second Kenya (12) -94.7 -94.1 -99.7 -80.3 
  Mexico (18) -51.1 -52.2 -69.6 -41.0 
  Tanzania (2) -93.3 -93.3 -94.7 -92.0 
  Uganda (12) -71.7 -68.4 -79.5 -51.9 
  Overall (44) -69.7 -69.9 -99.7 -40.9 
Maize yield First Kenya (81) 87.5 92.9 18.9 275.0 
 Second Kenya (72) 131.4 133.0 -7.5 363.6 
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  Mexico (9) 49.0 57.0 8.0 121.0 
  Tanzania (1) - - 109.5 109.5 
  Uganda (12) 101.7 125.6 63.3 257.1 
  Malawi-CA (9) -5.9 -10.2 -47.0 18.2 
  Malawi-conv (9) -18.4 -3.7 -54.5 62.2 
  Overall (193) 100.0 99.0 -54.5 363.6 

†N represents the total number of observations; CA = conservation agriculture; Conv = conventional 
tillage. 

3.2.2 Suppression of witchweeds 
Witchweed (Striga spp.) is a root parasite that inhibits host growth and productivity of cereals. It is an 
important weed distributed in Africa, where S. hermonthica and S. asiatica parasitize maize, sorghum 
and pearl millet. Although not a problem in irrigated rice, Striga species inflict serious losses in upland 
rice in sub-Saharan Africa (Kaewchumnong and Price, 2008). Witchweed infests 40% of Africa’s arable 
land, and causes an estimated loss of USD 7-11 billion to the agricultural economy. There are two 
species of witchweed, namely Striga asiatica and Striga hermonthica, but the latter is the most 
important in East Africa. In Africa, the witchweed problem is intimately associated with agricultural 
intensification and land degradation (Sileshi et al., 2006). 

Intensification is reflected in greater use of cereal monoculture with little or no fallow period for non-
host plants. The level of witchweed infestation depends largely on the fertility status of the soil 
(Gacheru and Rao, 1998; Sileshi et al., 2006). The effect of different generations of push-pull has been 
studied in Kenya (Khan et al., 2008; Midega et al., 2015), Uganda (Hailu et al., 2018) and Malawi 
(Ndayisaba et al., 2020). Our summary of these studies shows that push-pull provides significant 
suppression of witchweed in maize (Table 2). First-generation push-pull reduced witchweed 
infestation of maize by 62-85% in Kenya and Uganda, relative to monoculture maize. 

Corresponding reductions by second-generation push-pull were 92% in Kenya and Uganda, but 10- 
21% in Malawi (Table 2). 

The mechanisms by which push-pull suppresses witchweed have been shown to involve increased 
availability of nitrogen, soil shading, and allelopathic root exudation of novel flavonoid compounds 
(Khan et al., 2002; 2008; Hooper et al., 2015). As Desmodium is a perennial crop, it is able to control 
witchweed even when the host crop is out of season (Hooper et al., 2015; Khan et al., 2008). According 
to analyses by D’Annolfo et al. (2020) in Western Kenya, farmers perceive the reduction of witchweed 
as one of the main benefits of adopting push-pull. 

3.2.3 Suppression of stem borers and fall armyworm 
A number of stemborer species, including six species in the genus Chilo (aleniellus, diffusilineus, 
orichalcociliellus, partellus, sacchariphagus and zacconius), Busseola fusca, four species in the genus 
Sesamia (calamistis, nonagrioides, botanephaga, and cretica), Eldana saccharina and Maliarpha 
separatella, affect maize, sorghum, millet, rice and sugarcane across Africa (Kfir et al., 2002). Busseola 
fusca, known as the African maize stalk borer, has become an economically important pest in most of 
the maize-growing African countries (Kfir et al., 2002). The main crop hosts for B. fusca are maize, 
sorghum, millets (both pearl and finger millet) and sugarcane (Kfir et al., 2002). Among Chilo species, 
the spotted stemborer (Chilo partellus) and C. sacchariphagus are alien invasive species native to Asia 
(Kfir et al., 2002). C. partellus poses the greatest threat to maize and sorghum in East Africa. It was 
established in East Africa in the 1950s, and has since spread across 18 African countries (Sileshi et al., 
2019; Yonow et al., 2017). A growing body of evidence suggests that C. partellus is competitively 
displacing the indigenous stem borers in East and southern Africa (Kfir, 2002). 
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 Various studies have assessed the effect of different generations of push-pull on stem borer 

infestation and damage across sites in Kenya (Khan et al., 2008; Midega et al., 2015; Hailu et al., 2018) 
and Uganda (Hailu et al., 2018). Our summary of the results shows reduction of stem borer infestation 
of maize by 66-83% across sites in Kenya and Uganda (Table 2). There are not many studies on other 
cereals, except sorghum in Uganda. According to a recent study by Hailu et al. (2018), the severity of 
stemborer infestation was significantly higher on sorghum than on maize. 

The fall armyworm (Spodoptera frugiperda) is an invasive alien pest native to the Americas, currently 
affecting over 43 countries in Africa (Cock et al., 2017; Sileshi et al., 2019). It causes 45%-67% loss of 
annual average production of maize in the affected countries (Day et al., 2017), equivalent to $ 6.2 
billion annually. The effect of second-generation push-pull on fall armyworm infestation and damage 
was recently evaluated across sites in Kenya, Tanzania, Uganda (Hailu et al., 2018; Midega et al., 2015; 
Njeru et al. 2020) and Mexico (Guera et al., 2021). Most of the studied systems showed lower levels 
of fall armyworm infestation and severity of damage than on maize monoculture. In Uganda, the 
severity of fall armyworm damage was generally higher on maize than on sorghum (Hailu et al., 2021). 
These results support the effectiveness of push-pull for management of the fall armyworm. 

Overall, the expansion of the geographic range of invasive alien species (e.g., spotted stem borer, fall 
armyworm) as well as emerging infectious plant diseases (e.g., maize lethal necrosis) of staples, such 
as maize and sorghum (see next section), provide a strong motivation for expanding push-pull into 
other farming systems and regions, where push-pull has remained unexplored. 

3.2.4 Reduction of plant diseases and mycotoxins 
Increased infestation of maize by insect pests, such as stemborers, has been reported to increase 
infection by mycotoxin-producing fungi (Opoku et al., 2019). In a study conducted in western Kenya 
(Njeru et al., 2020), a significant reduction was recorded in the incidence of Fusarium verticillioides 
(60%) and Aspergillus flavus (86%) in push-pull, which was reflected in reduced incidence of ear rots 
(50%). Fumonisin in maize from push-pull farms was also reduced by 39% (Njeru et al., 2020), which 
could further improve food security among smallholder maize farmers (Njeru et al., 2020). 

3.2.5 Improvement of soil health 
Soil health reflects the capacity of soil systems to respond beneficially to management, maintaining 
agricultural production as well as the provisioning of ecosystem services, nutrient cycling, and 
biodiversity conservation in the long term (Kibblewhite et al., 2008). The limited number of studies on 
soil variables measured so far indicate improvement in push-pull relative to maize monoculture. A 
study by Ndayisaba et al. (2021) recorded higher soil available nitrogen and phosphorus in push-pull 
compared to maize monoculture plots across three seasons. Drinkwater et al. (2021) showed that soil 
organic nitrogen was 20% greater and labile organic nitrogen reserves were five-fold greater in push-
pull compared to non-push-pull soils. Extractable soil phosphorus was also two-fold greater in push-
pull compared to non-push-pull soils (Drinkwater et al., 2021). 

Although fewer studies have been conducted on soil biological health variables, those available 
provide evidence for improvement in push-pull over maize monoculture. A study by Midega et al. 
(2008) showed higher ground-dwelling arthropod abundance and diversity in push-pull. According to 
a recent study by Mwakilili et al. (2021), push-pull supported more diversified fungal microbiomes 
than monoculture plots in Western Kenya. Few differences were noted between push-pull and 
monoculture in soil bacterial communities (Mwakilili et al., 2021). Soil microorganisms play a 
significant role in soil health and productivity through direct and indirect mechanisms mediated 
through root systems. 
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 Taken together, these results indicate that push-pull has the potential to improve soil health. 

However, most of these studies were conducted in a limited number of sites in the maize-mixed 
farming system in Kenya, and comparable data are lacking in other parts of Africa. With the increasing 
interest in expanding push-pull, it is important to monitor various aspects to demonstrate the soil 
health benefits of the technology, and inform good policy and practice. 

3.2.6 Climate change adaptation and mitigation 
Emerging evidence suggests that push-pull can provide opportunities for adaptation to climate 
change, while also providing mitigation benefits. A study by Gugissa et al. (2022) in Ethiopia indicated 
that push-pull farming systems are more climate-resilient than their non-push-pull counterparts. 
Push-pull maize farming had a significant impact on 8 out of the 13 agroecosystem indicators of 
climate resilience (Gugissa et al., 2022). The contribution of push-pull to adaptation to climate change 
is based on inference about the role of the technology on crop productivity. In terms of mitigation 
benefits, preliminary data show that soil carbon is higher in push-pull than in monoculture plots 
(Ndayisaba et al., 2022). In western Kenya, push-pull increased aboveground biomass in the maize-
based production system (Ndayisaba et al., 2020). This suggests that push-pull has the potential to 
add more organic residues into soils, which can increase carbon accumulation. 

 Build-up of soil carbon helps farming systems adapt to climate change, by increasing resilience of soils 
to drought and flood. With the expansion of push-pull into other crops and farming systems, collecting 
data on adaptation and mitigation benefits will be an important contribution to providing evidence 
that can inform policy and good practice. 

3.2.7 Financial returns and viability 
Several authors have analysed the profitability of push-pull, providing evidence that the benefits of 
the technology outweigh the costs compared to non-push-pull plots. For example, Khan et al. (2001) 
compared the benefit-cost ratio of push-pull with maize monoculture and/or use of pesticides, and 
established a positive return on investment of 2.2 for push-pull, compared to 0.8 for monoculture and 
1.8 for pesticide use. In a more detailed economic analysis using data over seven cropping years, 
returns on investment for basic factors of production under push-pull were evaluated and compared 
with other cropping methods (Khan et al., 2001). This study showed that the establishment of push-
pull requires extra labour and capital costs for initial establishment. 

However, in subsequent years, the cost is significantly reduced. Despite land being perceived as lost 
to trap cropping, the resultant benefits of push-pull through maize yield increase and extra income 
from sale or utilization of Napier grass and Desmodium were more than sufficient to cover all initial 
capital costs and still make a substantial profit margin (Khan et al., 2014). Khan et al. (2008b) reported 
positive total annual revenues, ranging from $351 ha-1 in low potential areas to $957 ha-1 in high 
potential areas, which generally increased in subsequent years. Returns on labour within the first year 
of establishment ranged from $0.5 per man-day in low potential areas to $5.2 per man-day in higher 
potential areas under push-pull, whereas in maize monoculture, this was negligible or even negative 
(Khan et al., 2008b; Kassie et al., 2018). Furthermore, net present values (NPV) from push-pull were 
positive and consistent over the years. Using discounted partial budget and marginal analysis, De 
Groote et al. (2010) concluded that push-pull earned the highest revenue compared with other soil 
fertility management technologies in Western Kenya. According to a more recent study by Murage et 
al. (2016) in Western Kenya, Tanzania and Ethiopia, the marginal rate of return (MRR) was 109.2% for 
sorghum and 143.4 % for maize, suggesting an expected positive impact on the community, should 
they adopt the technology. However, profitability does not stem from higher maize yields, but from 
the value of fodder crops in Western Kenya (De Groote et al., 2010). 
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 Two scenarios below underscore the economic value to farmers of push-pull in Africa and elsewhere. 

Chepchirchir et al. (2018) analysed the financial viability of push-pull in four districts of eastern 
Uganda, and showed that the economy of these districts would derive an overall net gain of 3.8 million 
USD. At a discount rate of 12% for a period of 20 years (2015–2035), the net present value was 
estimated at 1.6 million USD, the internal rate of return at 51%, and the benefit to cost ratio at 1.54. 
Guera et al. (2021) analysed the financial returns of push-pull in Mexico, and found that the 
establishment costs were higher than those of monoculture maize. However, these costs were offset 
by the aggregate value of the companion crops. The net present value (NPV) of all systems was 
positive, indicating that systems are economically viable. These systems, in addition to recovering the 
investment, generated a minimum profit of 70 cents per dollar invested (Guera et al., 2021).  

Taken together, these findings demonstrate that push-pull is economically viable and profitable. 
However, sustained adoption of the technology has not been commensurate with its economic 
potential (see 3.3 below). The slow adoption has been previously attributed partly to lack of 
availability of desmodium seeds, and consequently a high opportunity cost of procuring the seeds. 
Although desmodium seed is now much more readily available, farmers seem to consider it expensive 
despite the profitability of the investment as demonstrated by the reviewed studies. It should be 
noted that the PPT strategy shows the strongest economic benefits over the long term, due to the 
high opportunity costs of establishment, which may be at odds with farmers’ need for short-term 
returns on investments. We thus highlight a need for more exhaustive cost-benefit analyses that 
consider the temporal scale of investment represented by adoption of the PPT. In addition, 
profitability alone may not determine technology adoption. Another possible explanation is farmers’ 
knowledge, attitudes and subjective norms that have been known to affect adoption of similar 
agricultural technologies (e.g., Meijer et al., 2015a,b). The effect of these factors in the adoption of 
push-pull has not been studied. Therefore, we recommend future studies to examine the importance 
of socio-psychological factors including social influence, knowledge, attitudes and subjective norms 
for PPT adoption. 

3.3 Adoption by farmers 
Technology adoption is a complex concept, and its definition may vary from one technology to 
another. For instance, Mwangi and Kariuki (2015) define technology adoption in agriculture as a 
mental process that farmers go through from hearing about a technology to the point of using it. 
Beyond the initial use, technology adoption is achieved through a period of trying and achieving some 
degree of adaptation (Loevinsohn et al., 2012; Fadeyi et al., 2022). Here, adoption of push-pull is said 
to have taken place if a farmer has tried or tested it for at least two seasons. Accordingly, push-pull 
had been adopted by over 68,800 smallholder farmers in Kenya, Uganda, Tanzania and Ethiopia by 
2014 (Khan et al., 2014). Of these, 52,746 adopters were in western Kenya, about 5000 in central 
Kenya and another 10,600 in Uganda and Tanzania, along with 343 in Ethiopia (Khan et al., 2014). 
According to Khan et al. (2014), adoption of push-pull has continuously risen with an estimated rate 
of 30% annually by 2014. An adoption rate of 50% was anticipated for later years, because of extensive 
on-going efforts in technology transfer in the cereal-livestock farming systems of sub-Saharan Africa 
(SSA) (Khan et al., 2014). By 2021, push-pull has been adopted by over 258,574 farmers across East 
Africa, of which 87683, 170027 and 864 have adopted first-, second- and third-generation push-pull, 
respectively (http://www.push-pull.net/adoption.shtml). In each case, adoption was more common 
for female (about 58%) than male farmers. 

Using a sample of 898 respondents (360 in Kenya, 240 in Tanzania, 298 in Ethiopia), Murage et al. 
(2016) found high willingness to adopt second-generation push-pull among farmers: 87.8% overall; 
92.1% in Tanzania, 88.6% in Ethiopia and 84.3% in Kenya. Gender, perceptions of Striga severity, 
technology awareness, and input market access were the most likely factors to positively influence 
the decision to adopt. Among the main drivers of adoption of push-pull, first and foremost was the 
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 need to control witchweed, followed by the need to increase yields of cereal crops, control 

stemborers, provide fodder, control soil erosion, and improve soil fertility. Khan et al. (2008) found 
that high pest pressure was a strong motivation for adoption of push-pull. According to De Groote et 
al. (2010), push-pull is likely to be profitable in areas with sufficient livestock and a demand for fodder. 

A number of studies have evaluated adoption of push-pull, including gender dimensions of adopting 
(e.g., Murage et al., 2011; 2015a, b; Muriithi et al., 2018; Diiro et al., 2018; Kassie et al., 2020). In a 
study in Western Kenya, Muriithi et al. (2018) did not find any gender differences in adoption of push-
pull and other practices, including maize-grain legume intercropping, crop rotation, fertilizer use and 
improved maize seeds. This suggests that the promotion and dissemination of push-pull can be 
supported equally for male and female farmers. Murage et al. (2015a, b) analysed gender perceptions 
in adoption of push-pull, but examined the gender of the household head, rather than the specific plot 
or farm manager within the household. Diiro et al. (2018) and Kassie et al (2020) assessed women 
empowerment among cereal growers, as well as changes in maize productivity and dietary diversity 
caused by adopting push-pull. Both studies reported positive impacts, suggesting the need for 
promoting empowerment along with technology dissemination. In a more recent study in Western 
Kenya by D’Annolfo et al. (2020), farmers cited seven reasons for adopting push-pull: Striga weed 
control (31% of farmers); increasing yields (19%); additional access to extension services (19%); 
reducing soil erosion (11%); increasing fodder production (8%); enhancing soil fertility (8%); control of 
stemborer (4%). Farmers also cited six benefits from adoption of push-pull farming: reduction in Striga 
weed (30% of farmers); increased yields (22%); enhanced soil fertility and increased animal feed (13%); 
reduced soil erosion (11%) and improved quality of products (11%). 

While a number of studies exist that have examined the factors of push-pull adoption, to date no 
studies were identified that have examined the factors and dynamics of push-pull disadoption after 
>2 seasons of practicing the technology. Preliminary data of UPSCALE (unpublished data; Public 
Deliverable D7.1, Month 42) point to several factors driving this, which are key in order to understand 
the potential for long-term adoption, sustained practice and possible spontaneous diffusion of the 
PPT among smallholder farmers. 

3.4 Scope and opportunities for expansion of push-pull 
Although most studies on push-pull have been implemented in Kenya, a growing body of evidence 
suggests that there is scope for expansion. The scientific underpinnings of push-pull and the 
mechanisms by which companion crops help reduce target pests have been well-documented in 
reviews and syntheses (Cook et al., 2007; Khan et al., 2016; Pickett et al., 2014). Therefore, in this 
section we will focus on the scope and opportunities for expansion to crops and farming systems not 
covered before. Obviously, this task requires careful analysis and identification of priority pests and 
crops that merit investment, which is outside the scope of this work. We can, however, propose 
priority “categories” of pests and target crops based on recent reviews and analyses on the subject 
matter (Anderson et al., 2004; Paini et al. 2016; Savary et al., 2019; Sileshi et al., 2019; Sileshi and 
Gebeyehu, 2021; Turbelin et al. 2017). The primary factors considered in such prioritization are the 
status of the pest (i.e., endemic vs alien invasive) or disease (endemic vs emerging infectious plant 
diseases) and the value of the commodity affected. Generally, alien invasive species (AIS) and 
emerging infectious plant diseases (EIPDs) merit greater attention in Africa, because they can 
destabilize food systems and economies due to their larger impact (Anderson et al., 2004; Paini et al. 
2016; Savary et al., 2019; Sileshi et al., 2019; Sileshi and Gebeyehu, 2021). 

Alien invasive species are defined as species whose introduction and/or spread outside their natural 
past or present distribution threatens ecosystems, habitats or species 
(https://www.cbd.int/invasive/). Newly established alien invasive species may benefit from the 
absence of natural enemies in the invaded areas, sometimes resulting in damage that by far exceeds 
that of native pests. EIPDs are defined as new diseases with increased virulence, geographical spread 
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 and/or host range, resulting in epidemics or pandemics (Anderson et al., 2004). Unlike endemic 

diseases, EIPDs are caused by incursions of alien invasive pathogens and/or emergence of 
hypervirulent pathotypes, and are hence characterized by epidemics or pandemics that intensify over 
successive growing seasons (Sileshi and Gebeyehu, 2021). Analysis of recent global invasion patterns 
(Paini et al., 2016; Turbelin et al., 2017) suggests that Africa is exposed to significant alien invasive 
species and EIPD impacts. We presume agroecological farming practices such as push-pull are likely to 
be more buffered against alien invasive species and EIPD threats than monoculture systems. 
Therefore, investment in push-pull should focus on alien invasive species and EIPDs that affect crops 
of significant food security and/or livelihood value. In the following sections we will discuss such crops 
and associated pests, with example cases where push-pull has been successful. 

3.4.1 Expansion with other crops 
3.4.1.1 Cereals 
The existing push-pull involves the combined use of intercropping and a trap crop to attract stem 
borers on a highly susceptible trap plant (pull) and drive them away from the maize crop by a repellent 
intercrop (push). Theoretically, this can be expanded to other crops, such as sorghum and millets, that 
are staple crops in most parts of Africa. Like maize, these crops are vulnerable to a number of endemic 
and alien invasive species (Sileshi et al., 2019) and emerging infectious plant diseases (Sileshi and 
Gebeyehu, 2021). For the last two decades, most of the studies on push-pull focussed on controlling 
stem borers (mainly B. fusca, C. partellus) and the witchweed in maize cropping systems in East Africa 
(Table 2). As indicated in Figures 2 and 3, stem borers are expected to expand their distribution, 
affecting greater areas of Africa. Until recently, C. partellus was restricted to low and mid altitudes in 
eastern and southern Africa, but its range has recently expanded into higher altitude areas 
(Mutamiswa et al. 2018; Yonow et al. 2017). Various models predict further expansion of its 
geographical range to higher altitudes with future climate changes in eastern, southern, central and 
much of western Africa (Figure 3; for details see Sileshi et al., 2019), thus threatening sorghum and 
millet production. Even in East Africa, prime maize and sorghum production areas may fall under 
greater threat. 

Recently, fall armyworm, another invasive species, has spread to over 43 African countries, affecting 
maize cultivation (Sileshi et al., 2019). According to Timilsena et al. (2022), a large area in eastern and 
central Africa is projected to have an optimal climate for fall armyworm persistence. Areas that are 
currently optimal and suitable for its expansion in the future are given in Figure 3. 

Push-pull was tested and shown to effectively control fall armyworm in Kenya, Tanzania and Uganda 
(Hailu et al., 2018; Midega et al. 2018), and more recently in Mexico (Guera et al., 2020; 2021). 
Therefore, opportunities exist for expanding push-pull for management of these pests in other areas 
that are suitable for maize and sorghum (Figures 4-7). Opportunities also exist for expansion of push-
pull for the management of witchweeds in millet (Midega et al., 2010). Taking all the evidence into 
account, we recommend further testing and promoting push-pull in the prime maize and sorghum 
production areas (highlighted green in Figures 4-7) in the East African countries, where the technology 
has not been piloted before. 
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Figure 2. Current and future potential distribution of the maize stalk borer (Busseola fusca) in 
maize production systems in Africa (Ong’amo et al., 2016). 
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Figure 3. Climate suitability of Africa for the spotted stem borer (Chilo partellus) to (a) persist 
and (b) show positive growth under natural rainfall and irrigation, masked by harvested areas 
of host plants (maize, sorghum, sugarcane, pearl millet and rice) from Yonow et al. (2017). (c) 
Current and (d) future (by 2030) distribution of fall armyworm (Spodoptera frugiperda) from 
Timilsena et al. (2022). Areas with eco-climatic index (EI) = 0 but growth index (GI )  > 0 
support fall armyworm seasonal population growth, while areas with EI = 0 and GI = 0 are 
unsuitable for fall armyworm. 

 

 

 

 

 



H2020-SFS-2019-2                                                                                                                              

 
21 
 

D1.1 Report on identity and structure of 
 

 

Figure 4. Maize (top) and sorghum (bottom) production areas in Kenya. 
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Figure 5. Maize (top) and sorghum (bottom) production areas in Ethiopia (2011-2016 
average), based on data from the Central Statistical Agency (Source: USDA Foreign 
Agricultural Service). 
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Figure 6. Maize (top) and sorghum (bottom) production areas in Tanzania (2014-2015 annual 
agricultural survey by the National Bureau of Statistics (Source: USDA Foreign Agricultural 
Service). 
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Figure 7. Maize (top) and sorghum (bottom) production areas in Uganda (2008-2009 Census 
of Agriculture, Uganda Bureau of Statistics (Source: USDA Foreign Agricultural Service). 
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 3.4.1.2 Sugarcane 

Sugarcane production and processing are important sources of employment and foreign exchange in 
sub-Saharan Africa (Hess et al., 2016). The continent is considered a critical region for expansion of 
production, due to high production potential, demand for biofuels, low cost and proximity to 
European markets (Hess et al., 2016). Sugarcane production ranges from large commercial estates to 
small plots managed by smallholders in out-grower schemes. Figure 8 shows the distribution of 
sugarcane production areas, with regions of concentration in west, east and southern Africa. The 
sugarcane stem borer (Eldana saccharina Walker) is the most damaging insect pest of sugarcane in 
many parts of Africa (Cockburn et al., 2014). This species is widely distributed in the continent and is 
also considered a pest of maize and rice (Kfir et al., 2002). 

Various laboratory, cage and field trials have demonstrated that push-pull can lead to suppression of 
E. saccharina abundance and reduction in damage to sugarcane in South Africa (Kasl, 2004; Barker et 
al., 2006). The technology was also promoted as part of area-wide integrated management of the 
sugarcane stem borer in the South African sugar industry (Cockburn et al., 2014). Push-pull is currently 
being implemented on sugarcane farms in the Midlands North area of KwaZulu Natal (Webster et al., 
2009). The ‘push’ component is molasses grass (Melinis minutiflora), which has a repellent effect on 
sugarcane stem borer (Kasl, 2004; Barker et al., 2006). Molasses grass is also attractive to 
Xanthopimpla stemmator, which is a natural enemy (parasitoid) of sugarcane stem borer (Kasl, 2004). 
The ‘pull’ components are Bt maize and indigenous wetland sedges. Bt maize is used as a ‘dead-end 
trap crop’, because of the toxic effect of the cry protein against the borer larvae (Keeping et al., 2007). 
Cockburn et al. (2014) surveyed 53 farmers representing 30% of the registered large-scale farmers 
across the Midlands North region, and found that perceived barriers to adoption of push-pull were 
attitudes towards the pest (33% of respondents), cost and time constraints (27%), insufficient 
knowledge (25%), management problems (8%) and cooperation between farmers (7%). According to 
Barker et al. (2006), push-pull becomes economically feasible only at high pest pressure levels. High 
adoption rates in the near future are not likely, due to the perception of sugarcane borer as low-risk 
by some commercial sugarcane farmers in the Midlands North region (Cockburn et al. 2014). Little is 
known about the compatibility of push-pull with other crop management practices, especially in large 
scale commercial operations. For example, burning of sugarcane prior to harvest and using machinery 
in field operations may destroy the perennial companion plants. This issue needs to be further 
investigated. 

3.4.1.3 Pulses (seed legumes) 
Among pulse crops, only common bean (Phaseolus vulgaris) has been incorporated into push-pull 
(Khan et al., 2009). Traditionally, farmers intercrop maize with beans, normally planted either 
between rows of maize or in between maize plants within a row. According to Khan et al. (2009), 
integration of beans in push-pull does not compromise the witchweed and stemborer control efficacy 
of Desmodium, although it significantly increases labour and total variable costs (Khan et al., 2009). 
These findings highlight opportunities for expanding the portfolio of crops to pulses, and investigating 
the potential of push-pull to reduce bean pests. 
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Figure 8. Distribution of sugarcane production areas in Africa based on modelled data (Hess 
et al., 2016). 

3.4.1.4 Vegetables 
Vegetables, such as brassicas (e.g., rape, mustard, cabbage), tomato and onions, are an important 
source of carbohydrates and essential nutrients. Vegetables also have high market value, and generate 
household income throughout the year. A recent review and analysis (Sileshi et al., 2019) identified 
the tomato leaf miner (Tuta absoluta), other leaf miners (Liriomyza trifolii, Liriomyza huidobrensis, 
Liriomyza sativae) and Western flower thrips (Frankliniella occidentalis) as the most important alien 
invasive species affecting vegetables and horticultural crops across Africa. 

However, reviewed literature on push-pull in Africa did not provide any reports on vegetable pests. 
Experimental work on vegetable integration in push-pull is still in its infancy. 

Experience from outside Africa may shed some light on the possibility of expanding push-pull to 
vegetables. A good example of such research is the evaluation of push-pull for management of 
cabbage root fly (Delia radicum) in brassicas (Kergunteuil et al. 2015). Cabbage root fly is a worldwide 
pest specialized on brassicaceous plants. Cabbage root fly infestations can cause a yield loss of up to 
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 90 % in fields not treated with pesticides. Kergunteuil et al. (2015) conducted studies aimed at 

selecting both plants and olfactory stimuli that could be used in the development of a push-pull 
strategy against the cabbage root fly in the Netherlands. This study concluded that plants belonging 
to the same family (even species) may exhibit different levels of attractiveness toward D. radicum 
(Kergunteuil et al., 2015). 

3.4.1.5 Root and tuber crops 
Root and tuber crops, such as cassava and potato, play a critical role in food security and household 
income in Africa. However, production of these crops is constrained by a number of alien invasive 
species and EIPDs. For example, cassava production is constrained by cassava green spider mite 
(Mononychellus progresivus), cassava mealybug (Phenacoccus manihoti), spiralling whitefly 
(Aleurodicus dispersus) and the Southern armyworm (Spodoptera eridania) (Sileshi et al., 2019), plus 
two EIPDs, namely cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), with 
combined annual losses estimated at US$ 1 billion across Africa (Sileshi and Gebeyehu, 2021). 

Although no information is available on the use of push-pull in root and tuber crops, experience from 
outside Africa may shed some light on the possibility of expansion. For example, Poveda et al. (2019) 
tested a variant of push-pull for protection of potatoes in the high Andes of Colombia. On each farm 
they established two potato plots (cv. Parda Pastusa). The push-pull treatment consisted of the Roja 
Nariño potato variety as a trap crop (pull), which was grown in the middle row of the plot, and a 
repellent spray of garlic pepper extract (push). The results suggest that diversification using push-pull 
can reduce pest damage through behaviour modification, resulting in increased crop productivity 
(Poveda et al., 2019). 

3.4.1.6 Cotton 
As mentioned in the Introduction, the push-pull strategy was first conceived in the context of Heliothis 
management in cotton (Pyke and colleagues, 1987). A few studies (e.g., Duraimurugan and Regupathy, 
2005; Jadhav et al., 2008) have tested push-pull for management of Helicoverpa armigera in cotton. 
According to Duraimurugan and Regupathy (2005) a combination of push-pull (with okra as a trap 
crop), neem seed kernel extract and nuclear polyhedrosis virus resulted in a reduction in H. armigera 
incidence and damage to fruiting bodies and boll, compared to cotton sole crop in India. H. armigera 
has a widespread global distribution, and it attacks over 200 species in nearly 20 families of flowering 
plants. In Africa, it is a pest of cotton, pigeon pea, chickpea, tomato, sorghum, maize, cowpea, okra, 
peas, beans and soybeans. Because of the widespread use of Bt cotton and large-scale and 
indiscriminate use of chemical pesticide, H. armigera has developed resistance to Bt cotton and many 
pesticides (Bird, 2017). We thus recommend future studies to examine the potential of push-pull in 
cotton cropping systems. 

3.4.2 Expansion to other farming systems 
The push-pull technology has been widely tested in the maize mixed farming system in Kenya, and to 
some degree in Tanzania and Uganda. This farming system covers over 10% of the land area of East 
Africa (Ethiopia, Kenya, South Sudan, Uganda and Tanzania), central Africa (DR Congo, Angola) and 
southern Africa (Zambia, Malawi, Zimbabwe, Botswana, South Africa, Swaziland, Lesotho and 
Madagascar) (Garrity et al., 2012). With a total area of over 395 million ha and a human population of 
over 142 million people, this is the most important food production system, the food basket and driver 
of agricultural growth in SSA (Garrity et al., 2012). Opportunities, therefore, exist for testing and 
expansion of push-pull in those countries. Other farming systems where push-pull holds significant 
potential include agropastoral farming systems, cereal-root crop mixed farming systems and root and 
tuber crop farming system. Agropastoral farming systems cover semi-arid areas in West, East and 
Southern Africa. Livelihoods are derived from sorghum, maize, pearl millet, dryland pulses, sesame 
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 and livestock. Cereal-root crop mixed farming systems cover sub-humid areas in West and Central 

Africa. Here, livelihoods are derived principally from sorghum, maize, millet, cassava, yams, legumes 
and cattle. Root and tuber crop farming systems cover lowland areas in West and Central Africa. Here, 
livelihoods are derived principally from yams, cassava and legumes (Garrity et al., 2012). These farming 
systems are currently in crisis due to several interacting factors, including declining farm sizes, low 
input use, land degradation, increasing poverty (Garrity et al., 2012), vulnerability to climate change, 
alien invasive pests (Sileshi et al., 2019) and emerging infectious plant diseases (Sileshi and Gebeyehu, 
2021). These challenges drive the demand for testing and expanding push-pull into regions such as 
central and southern Africa. Moreover, an area that has remained largely unexplored by research and 
development of push-pull is vector management. Most of the emerging infectious plant diseases are 
spread by vectors, and push-pull can play a significant role in integrated vector and disease 
management. 

4 Limitations and challenges 

4.1 Lack of information on crops other than maize 
Information is lacking on the performance of push-pull in crops other than maize. This hampers 
formulation of concrete recommendations on the choice of specific crops to be included in the 
promotion of push-pull. 

4.2 Lack of uniform and standardized methodology 
Metrics used and variables measured may vary from study to study. For example, three different 
authors assessed the severity of fall armyworm infestation by scoring damage on a 1–5 scale in 
apparently similar ways. However, close examination of the scales reveals subtle differences between 
methods (Table 3). Measures of witchweed infestation similarly vary from study to study. For example, 
Khan et al. (2008) reported the number of witchweed plants per 100 maize plants, while Midega et al. 
(2015) recorded the number of emerged witchweed plants within a radius of 15 cm around the base 
of tagged maize plants, and expressed observations as number per 100 plants. Ndayisaba et al. (2020) 
recorded the number of witchweed plants per meter square, whereas Hailu et al. (2018) recorded 
witchweed counts within a circumference of 94.2 cm, and Niassy et al. (2022) recorded witchweed 
infested plants in 3 m by 3 m quadrants. This level of variability in sampling and enumeration makes 
comparison of results across studies very difficult. There is a strong need for development of 
guidelines and methodology for uniform and consistent application across studies in different 
countries. Clear criteria, indicators and metrics of performance must be established for each target 
farming system. In some studies, push-pull was compared with the prevalent farmer practices, 
considered as the “control”. In other studies, push-pull was compared with what is called “non-push-
pull” plots (e.g., Drinkwater et al., 2021; Ndayisaba et al., 2020). 

Drinkwater et al. (2021) designated monocultures and maize-food legume intercrops as non-push- 
pull cropping systems, and broadly compared them with push-pull. It must be noted that farmers’ 
practices and non-push-pull are not consistent treatments, but an agglomeration of heterogeneous 
treatments. Therefore, such comparisons may yield non-significant results, and obscure true 
differences simply because of the heterogeneity of treatment. 

The lack of consensus on what constitutes ‘control’ and best-practice guidelines on how to do research 
and development (R&D) is likely to continue being a stumbling block in expanding the technology to 
other crops or farming systems. Harmonization of approaches and methods can significantly reduce 
transaction costs and increase efficiency. In that sense, a common research methodology, including 
joint trials across multiple locations/regions, common design principles, data collection and sharing 
platforms, must be put in place. A transparent mechanism for technology evaluation and release 
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 should also be in place. Validity may be judged by compliance with National Technology Release 

Committees and national guidelines for technology release. A well-defined scaling-up strategy with 
gender and youth orientation should also be put in place, so that push-pull proved to be viable can be 
promoted. 

Table 3. Differences in methods used by different authors quantifying severity of fall armyworm 
infestation. 

Hailu et al., (2018) Guera et al. (2021) 
1 = Clean with no visual infestation symptoms 1. Damage-free plants (plants without visual 

symptoms of damage) 
2 = Very little damage 2. Plants with low damage (plants with leaf 

area damage less than 25%) 
3 = High level of damage where plants show the 
presence of fall army worm (FAW) larvae feeding 
and most of the young leaves show infestation 
symptom, 

3. Plants with medium damage (plants with 
leaf area damage between 25% and 50%) 

4 = Severe damage where almost 75% of the 
leaves are severely affected and excrement is 
visible on the infested areas and the maize whorls 

4 = Plants with high damage (plants with leaf 
area damage between 50% and 75%) 

5 = Very severe damage where total plant damage 
due to FAW is visible 

5 = Plants with very high or severe damage 
(plants with more than 75% of their leaf area 
damaged) 

 

4.3 Limited focus on the acceptable level of effect 
Most of the papers reviewed have focussed on statistical significance, and therefore acceptable levels 
of increase or decrease in measured variables in push-pull relative to “control” were often not clearly 
defined. For example, it is often stated that stem borer damage and striga counts in maize plants were 
significantly lower in push-pull than in monoculture plots; but it was often unclear whether this 
translated into acceptable levels of reduction to warrant adoption of push-pull. 

Researchers have rarely asked, for example, what is the acceptable to farmers in terms of decrease in 
stem borer damage or striga infestation due to push-pull. Investment in a particular treatment will be 
justified only if there is an acceptable decrease in risks or increase in benefits over current farmer 
practices. Information on the magnitude of differences can have an important bearing on decision- 
making by clients. Without such information, even a well-conducted experiment will be a mere list of 
statistically significant differences with little practical significance. In future, more emphasis should be 
placed on the magnitude of differences and their variability (i.e., risk) rather than the mere detection 
of statistical significance. 

5 Conclusions and recommendations 
Based on our review and quantitative analyses, we conclude that push-pull technology significantly 
reduces witchweed infestation of maize, damage by spotted stemborers, maize stalk borer and fall 
armyworm in the locations where the technology was tested in the maize-mixed farming system in 
East Africa. We also conclude that the technology significantly increases maize yields, and it is 
financially viable wherever this was tested. The review has identified opportunities for expansion of 
the technology in other cereal crops, pulses, vegetables, root and tuber crops and cotton. The 
potential role of push-pull for integrated vector and disease management has remained unexplored. 
For example, routine monitoring of maize lethal necrosis disease and its vectors is highly 
recommended in existing push-pull trials in areas where the disease occurs. Push-pull should also be 
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 tried out with smallholder cotton production where out-grower schemes exist. When trying out the 

technology in commercial farms, the compatibility of practices, such as burning and use of machinery, 
with companion crops should also be investigated. We also highly recommend the development and 
sharing of best-practice guidelines for trial design and monitoring of performance of the push-pull 
technology as it is promoted across different regions in Africa. 
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